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Abstract. The electronic contributions to the binding energy between a pair of hydrogen 
atoms and the interaction of hydrogen with transition-metal impurities are estimated in the 
tight-binding approximation. The role of the band and bound states on the electronic 
structure of the impurity problem and the pair interactions is examined. The appearance of 
a bound state below the conduction band contributes noticeably to the chemical interactions. 
The binding energy between two hydrogen atoms is found to be attractive for the first nearest 
neighbours. The interaction between hydrogen and transition-metal impurities to the left of 
Pd in the periodic table is also calculated. In addition to the above, pair interactions between 
‘4d’-type impurities have been estimated. 

1. Introduction 

The properties of transition metal-hydrogen systems have drawn the attention of 
researchers working in both applied and fundamental fields of physics and materials 
science. Actual research projects cover a wide area of topics such as metal hydrogen 
bonding, the influence of hydrogen on physical and chemical properties, surface studies, 
diffusion of hydrogen in metals, trapping of hydrogen by defects, etc (Ponyatovesky 
et al1984, Wicke et al1978, Sakamoto et all988). 

Probst and Wagner (1987) recently studied the hydrogen distribution near iron 
and cobalt solute in palladium hydrides. Their experimental findings agreed with the 
calculations of Khan et a1 (1981) and Demangeat et a1 (1980) based on a tight-binding 
description of the Green function method. Unfortunately, these calculations were based 
on a local neutrality criterion for the change occurring at the impurity site. Needless to 
say the above approximation is non-self-consistent as indicated in a more elaborate work 
on the electronic structure of H in Pd (Khalifeh and Demangeat 1983). A hydrogen- 
induced bound state appears below the Pd conduction band. Owing to this modification, 
the calculations reported by Khan et a1 have been modified. 

A fundamental understanding of the physical phenomena related to trapping of 
hydrogen by lattice defects in metals remains a challenging problem in the hydrogen- 
metal system. The introduction of substitutional impurities perturbs the electronic 
structure of the host and induces strain fields around the impurity. The problem becomes 
more complicated if hydrogen is added to the system. 
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Jena et a1 (1985) and Manninen et a1 (1984) have carried out an ab initio calculation 
on the role of the transition metals in hydrogen trapping. In their approach the hydrogen 
potential energy is constructed in terms of the host electron density map using the 
effective-medium theory. They include the hydrogen zero-point motion by solving the 
Schrodinger equation and calculate the hydrogen-induced lattice distortions by using 
Green function techniques. 

Recently, the hydrogen-hydrogen (H-H) and hydrogen-transition-metal impurity 
(H-T) interactions in FCC ferromagnetic nickel host have been studied by Khalifeh 
(1988a, b). It has been found that H repels H for the first and second nearest-neighbour 
positions; whereas in the case of H-‘d’-type impurity, hydrogen iavours trapping by 
transition-metal impurities to the left of Ni in the periodic table. Further, the problem 
of H-H and H-T in vanadium (V) and niobium (Nb) has been studied by Mokrani 
(1988). 

The purpose of this work is to study the electronic structure of Pd and Pd dilute alloys 
at low hydrogen concentration (a-PdH) at 0 K. The outline of this paper is as follows. 
Section 2 is devoted to the general formulation of the electronic contribution to the 
binding energy between two impurities. Section 3 presents the numerical calculations 
and discussion of the pair interactions in a palladium host. Finally, in 0 4 we conclude 
our work. 

2. General formulation 

In this section we present a detailed derivation for the electronic part of the binding 
energy between pairs of impurities such as H-H, H-T and T-T in a Pd host. The 
following treatment is, in principle, valid for any transition-metal host irrespective of 
its geometry. However, in the next section our calculations are adapted to an FCC 
paramagnetic metal. To determine the electronic binding energy we have to start with 
the electronic structure of isolated impurities (i.e. hydrogen and ‘4d’-type transition- 
metal impurities). 

2.1. One interstitial impurity 

Experimental and theoretical results on the hydrogen-metal systems by Fukai (1984) 
and Lengler (1984) concerning the lattice site occupancy show that hydrogen occupies 
octahedral positions (0) in FCC structures for low hydrogen concentrations and tetra- 
hedral positions (T)  for high concentrations, whereas in the BCC structure hydrogen 
atoms occupy tetrahedral sites. 

The Hamiltonian of the system, irrespective of the hydrogen position in the host, is 
given by 

H = HO + IAs)ES,(As/ + vi + V’ (2.1) 
where the unperturbed Hamiltonian H o  is the tight-binding Hamiltonian for the pure 
metal. Here E i  is the energy level introduced by the isolated interstitial. The term V,  
couples the interstitial atom at il. to the crystal sites R ;  it has the form 

V ,  = iAs)Pi?(Rm 1 + cc (2.2) 
R +.I 

where PS,? is the hopping integral between the orbitals of the host and the interstitial at 
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positiond; m is the orbital symmetry with m = (s, p,  d). Here V’ represents thevariation 
of the host energy levels due to alloying. It may be stated as 

V’ = 2 1 Rd)V$(Rd 1 
R,d 

where V$ is the variation of the potential induced at the host site R arising from the 
presence of the interstitial impurity. 

To find the potential resulting from the presence of a hydrogen impurity at site A and 
the energy level for the isolated atom E i ,  we have to solve two non-linear equations. 
The first equation is 

2Zh(&F) = 1 (2.4) 
where Z*(E) is the number of displaced states up to E ;  here the factor 2 accounts for the 
spin degeneracy, and is the Fermi energy. The second equation is (Anderson 1961) 

E i  = Ea‘ + CYA + U S N s ( A )  (2 .5)  
where Ea‘ is the atomic level of the hydrogen atom in its ground state; a>, is the variation 
of the impurity energy level due to its existence in the metal. Here U? is the Coulomb 
correlation term in the hydrogen orbitals; Ns(A)  is the total number of ‘s’ electrons at 
the hydrogen site A .  The details of the formalism concerning the interstitial problem are 
reported in previous papers (Khalifeh and Demangeat 1983, Badirkhan and Khalifeh 
1987). 

2.2. One ‘4d’-type impurity 

A localised potential approximation is used here in order to describe the modification 
of the electronic structure of the pure metal due to substitutional impurities (Leonard 
and Stefanou 1985). The Hamiltonian of the dilute alloy (PAT) is given by 

H = H o  + AVRr. (2.6) 

Here AVRT is an operator, which takes the form 

and 6VRT is the localised potential arising from the replacement of the host atom at site 
RT by a new transition-metal impurity having a level 6VRT higher than the common level 
of the host atoms. The phase shift, AZ(&F), at the Fermi level is written as 

Equation (2.8) is known as Friedel’s sum rule; AZ(eF) is the difference in the number 
of conduction electrons between the substitutional impurity and the host. Once the 
electronic structure of the single interstitial and substitutional has been performed, one 
can estimate the binding energy of a pair of impurities. 

2.3. Hydrogen-hydrogen binding energy 

This section is devoted to the derivation of the electronic binding energy of a pair of 
interstitials located at the first, second, third and fourth nearest-neighbour octahedral 
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positions. The Hamiltonian of the system, corresponding to N metallic sites plus two 
hydrogen interstitials at sites A and ,U, is defined as 

H = H” + Vi. + V’$ + V’ 

H” = H o  + 1 As)& ( A S  1 + I ,us)ES, (ps 1 .  

(2.9) 

(2.10) 

with 

The terms V,  and V‘ are defined in § 2.1. Here V$ is a direct interaction defined in terms 
of hopping integrals between the ‘s’ orbitals of the interstitials 

v!$ = IAs)Ps,;(psl + cc. (2.11) 

The chemical binding energy between a pair of interstitial impurities takes the form 
(Demangeat et a1 1980). 

(2.12) 

Here ZiJ~) is the phase shift corresponding to apair of hydrogen atoms at the octahedral 
sites A and p. 

The pair interaction can be separated into two terms: the band contribution, which 
is given by the integral from &b up to E ~ ,  and the bound-states contribution, due to the 
poles of the expression. In the present case for E < &b, the poles lie outside the conduction 
band. The final form of the H-H binding energy becomes (Shadid 1989) 

AE(A, p)  = 2(E1 + E2 - 2E0)  + (2.13) 

(2.14) 

2.4. Hydrogen-‘4d’-type impurity binding energy 

In this section, we derive the chemical binding energy between a hydrogen interstitial 
located at an octahedral site and a ‘4d’-type transition-metal impurity located at the first 
and second substitutional neighbouring positions. Let the hydrogen atom be located at 
s,ite A (0, 0,O) and the ‘4d’-type transition-metal impurity be located at R,. Then, the 
Hamiltonian of the dilute alloy will have the form 

H =  H o  + IAs)E~~(AsI + V,: + AVR, + V’ (2.15) 

where quantities V,, AVRT and V‘ on the right-hand side of the above equation are 
already given in equations (2.2), (2 .7)  and (2.3)’ respectively. The chemical binding 
energy has a form similar to that of equation (2.12) (Khalifeh 1982) 

(2.16) 
-cc 

Here ZIRT(&) is the phase shift corresponding to hydrogen and ‘4d’-type impurities. 
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The final form of binding energy including the bound-states contribution is written 
as 

AE(A, R T )  = 2(E1 - E , )  

(2.17) 

where El and Eo are the positions of the bound states before and after the alloying. The 
above quantities are defined in the Appendix. 

2.5. ‘4d’-‘4d’-type impurity binding energy 

In this section, we are interested in estimating the binding energy between two ‘4d’ 
substitutional impurities of the ‘4d’ transition-metal series in palladium. The Ham- 
iltonian is given by 

(2.18) 

where AVR, and A VR2 are the potentials arising from the presence of the substitutionals 
at sites R I  and R2,  respectively. By using Dyson’s equation, the Green function matrix 
elements can be obtained. Here, ZRIR2(&) is the number of displacedstates after alloying. 
So that 

H = HO + AVR, + AVRZ 

(2.19) 

This formula is valid for the calculation of the binding energy between two substitutional 
impurities separated by a distance I R1 - R2 I and for different distances with different 
transition-metal impurities. 

3. Numerical results and discussion 

3.1. Introduction 

The aim of this section is to summarise the calculations of the pair interactions according 
to the formulation presented in the previous section. The electronic structure of pure 
palladium is described in terms of a tight-binding Hamiltonian with a Slater-Koster 
linear combination of atomic orbitals (SK-LCAO) in terms of two-centre integrals and an 
orthogonal basis set. The SK parameters used here are obtained by fitting the results of 
the first-principles augmented plane-wave band-structure calculation to an LCAO basis 
(Papaconstantopoulos 1986). 

It is convenient to sketch the local density of states (LDOS) for Pd (figure 1). The 
integrated ‘s’- and ‘p’-type density of states gives a small contribution to the total density 
of states, whereas the largest contribution, as expected, is due to the ‘d’ band. 

3.2. Electronic structure of one interstitial impurity 

In this section, numerical values of Ea and Vd are found by solving equations (2.4) and 
(2.5) self-consistently for different values of the Coulomb integral, which varies in the 
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Figure 1. Total local density of states of pure pal- 
ladium. lomb integral U;,s. 

Figure 2. Effective energy level -Ej versus Cou- 

Table 1. Hopping integrals (Ryd) between ‘s’ orbital and metallic ‘s’, ‘p’ and ‘d’ orbitals. 

s s a  spa  s d a  

0.087 0.162 0.120 

range 0.18 to 0.36 au. Bear in mind that the value of Eit is equal to -1 Ryd for the 
hydrogen atom in its ground state (i.e. Ea‘ = -0.5 au). The crystal field a;l is neglected 
(Darby et a1 1981). The total number of electrons at the hydrogen site is due to two 
contributions: the first is due to the filling of the bound state whereas the second arises 
from the conduction band. Similarly, the variation of the LDOS at the metallic site is also 
given as a sum of two terms. Our calculations for different values of show that a 
charge transfer occurs from metal sites to the hydrogen impurity. Furthermore, the 
existence of the bound state below the conduction band is in agreement with other 
calculations (Khalifeh and Demangeat 1983); the latter’s work includes the diagonal 
elements of Green functions only. Our results also agree with a different technique using 
a self-consistent muffin-tin Green function method (Yussouff and Zeller 1981). The 
total number of electrons in the zone of the first nearest neighbours of the hydrogen is 
different from the number of electrons at the impurity site, which means that other terms 
should be included in the Hamiltonian. 

Figure 2 represents a relationship between the effective energy level ER and the 
Coulomb integral UT. The graph can approximately be represented by a straight line, 
which means that the dependence of the energy level on the integrated LDOS at the 
hydrogen site is negligible. The hopping integrals between the hydrogen ‘s’ orbital and 
the ‘s’, ‘p’ and ‘d’ orbitals for the metallic sites (Pd) are restricted to the first nearest 
neighbours of H. The values of these parameters are shown in table 1 (Faulkner 1976). 
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Figure 3. The positions of the Fermi level E ~ ,  

atomic level for the hydrogen atom Ea‘ and effec- 
tive energy level E!,. 

In solving equations (2.4) and (2.5) the following approximation is used (Badirkhan 
1986): 

Vd F 1 2  = Vd (l-L 1 (3.1) 
so that ZA(c) in equation (2.4) becomes 

Z * ( F )  = - (l/n) arg[s - Ea - AYA(&) - ryA(c)] 
- 6Vd(r12)[3nod(r;5) + 2nod(rI2)] .  

Following Khalifeh and Demangeat (1983) the Coulomb integral for the PdH system 
is equal to 0.26 au. A solution of our problem for the above-mentioned value gives Vd = 
-0.00128 au and E i  = -0.3118 au (figure 3). These values are needed in calculating 
the variation of LDOS at the metallic site R (figure 4) and the LDOS at the hydrogen site 
(figure 5). 

3.3. Electronic structure of one ‘Id’-type impurity 

It is convenient to use a localised potential model for the single substitutional impurity 
since it makes the treatment of this problem easier than taking all the elements of the 
potential operator. Therefore, Friedel’s sum rule (equation (2.8)) is sufficient to find 
out the values of the potential introduced by the ‘4d’-type transition-metal impurities 
appearing to the left of Pd in the periodic table (i.e. Rh, Ru,  Tc, MO). We neglect the 
localised potentials for ‘s’ and ‘p’ and we assume equal values for the localised potentials 
corresponding to ‘dij’ and ‘dI2’. Thus equation (2.8) becomes 

AZR(EF) = -(2/n){3 arg[l - 6vd )Go(r;j)I 

+ 2 arg[l - 6vd (r12 )G0(r12)1). (3.3) 
However, other calculations on BCC transition hosts (Mokrani 1988) take the ‘s’ part 

of the potential into account by imposing 6vd = 26Vs. Equation (3.3) can be solved self- 
consistently by iteration. This approach is satisfactory when the number of conduction 
electrons of the impurity is slightly different from that of the host. 
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I 4 0.5 

Figure4. Variation of the density of states 
at the metallic site R. 

Energy (au) 

Figure 5.  Local density of states at the hydrogen site for Vd = -0.001 28 au and 
U? = 0.26 au. 

Table 2 shows an opposite sign behaviour between the charge difference AZR(eF) 
and the localised potential SV,. 

3.4. Estimation of the hydrogen-hydrogen binding energy 

In this section, we calculate the electronic contribution to the H-H binding energy. 
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Table 2. Localised substitutional impurity potential bVd(r ,2 )  values (au). 

AZR(EF) -1 (Rh) -2 (Ru) -3 (Tc) -4 (MO) 

6 Vd 0.013 0.023 0.031 0.038 

Energy iaul 
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Figure 6. Positions of the bound states: 
(e) oneimpurity; (U) two impurities, first 
nearest neighbours; (A) two impurities, 
second nearest neighbours. 

First, if the direct hopping integral between the two interstitials is neglected, equation 
(2.13) becomes 

AE(A, ,LL) = 2(E1 + E2 - 2Eo) 

The above equation gives the indirect interaction between H atoms, where E ,  and 
E ,  are the positions of the first and second bound states corresponding to the H-H 
interaction; Eo is the bound-state position arising from the single interstitial problem 
(figure 6). All the quantities in equation (3.4.) are defined in the Appendix. 

To calculate the bound-state contribution to the binding energy (i.e. the first term 
on the right-hand side of equation (2.13)), a test program is used to check out the 
singularities of the second part. The calculated exact and asymptotic binding energies 
for the previous case are shown in table 3. Note that the asymptotic interaction is 
represented by the leading term in the argument, i.e. ln(1 - x )  L- -x.  We have estimated 
the third and fourth nearest-neighbour interactions, but their contributions are negli- 
gible; hence they are not reported. 

Secondly, taking the direct interaction between the interstitials into account, by 
considering the values of the hopping integrals Byp, = 0.0208 au and BYp2 = 0.0045 au 
furnished by Faulkner (1976), we obtain the results in table 4. 
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Table 3. Exact and asymptotic binding energies (mev)  between two interstitial hydrogen 
atoms,oneatsiteAandtheotheratsitesp,(l, 1 , 0 ) a n d p 2 ( 0 ,  2,0),respectively,whenVd = 
-0.001 28 and = 0. 

Band contrib. Total binding energy 
Bound- 

Form state contrib. Exact Asymp. Exact Asymp. 

AE(A, p i )  -15.0 -2.6 -3.0 -17.6 -18.0 
AE(A,  p 2 )  26.9 -9.8 -9.3 17.1 17.6 

Table 4. Exact and asymptotic binding energies (mev)  between two interstitial hydrogen 
atoms, one at site A and the other at sites p ,  and p2 ,  respectively, when Vd = -0.001 28 and 
the values of Pj,; are as given by Faulkner (1976). 

Band contrib. Total binding energy 

Form state contrib. Exact Asymp. Exact Asymp. 
Bound- 

A E ( I ,  p , )  -41.0 35.7 34.4 -5.6 -6.9 
P2)  31.0 -14.3 -13.8 26.7 27.2 

Table 5.  Exact and asymptotic binding energies (mev)  between interstitial hydrogen 
impurity at octahedral site and a ‘4d’ transition-metal impurity in the first nearest neighbour 
position as a function of AZR(+) (given Vd = -0.001 28). 

Band contrib. Total binding energy 
Bound-state 

AZ,(&,) contrib. Exact Asymp. Exact Asymp. 

-1 (Rh) 6.6 58.9 59.2 65.5 65.8 

-3 (Tc) 14.0 138.4 140.5 152.4 154.5 
-4(Mo) 16.8 164.1 163.5 180.9 180.3 

-2(Ru) 10.9 103.3 104.6 114.2 115.5 

3.5. Estimation of the hydrogen-‘4d’-type impurity binding energy 

In this part the binding energy between the hydrogen atom at an octahedral site and a 
substitutional impurity at the first and second nearest-neighbour locations is calculated 
according to  relation (2.17). We refer back to 0 2.4, where the quantities x;.\(E) and 
Lj$, ( E )  are given in the Appendix. 

Table 5 displays the binding energy values between hydrogen and transition-metal 
impurity neighbours to Pd in the periodic table given as a function of AZR(EF). 

Our results show that, for negative AZR(EF), the electronic energy is repulsive for 
short ranges. The binding energies for H-‘d’-type impurities in Pd agree with calculations 
done by Demangeat etaZ(l980) for AZR(EF) = -2, -3 and -4, while it is different from 
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200 

m 
U 
. _  

2 50- Figure 7. Binding energy (mev)  between 
hydrogen impurity located at site A and a 
transition-metal impurity at the first near- 

- 4  -3 - 2  -1 0 est-neighbour position with AZR = -1, 
-2, -3 and -4. Charge difference 

Table 6. Exact binding energy (mev)  between two substitutional impurities located at the 
first nearest-neighbour positions. 

~ 

AE(R1, R2) -1 (Rh) -2 (Ru) -3 (Tc) -4 (MO) 

-1 (Rh) -0.4 -0.9 -1.2 -1.1 

-4 (MO) -1.1 -1.6 -0.9 4.9 

-2 (Ru) -0.9 -1.7 -2.3 -1.6 
-3 (Tc) -1.2 -2.3 -2.9 -0.9 

theirs for AZR(EF) = - 1. The second neighbour interaction H-T is small enough; hence 
it is neglected (cf figure 7 ) .  

3.6. Estimation of the ‘4d’-‘4d’-type impurity binding energy 

In § 2.5 we have shown that no singularities are present in the T-T interaction, so that 
the binding energy is a result of the band contribution only. Thus AE(R,, R 2 )  is 

where 

Ti1R2(&) = At$\Ati~[GO(l>’ + 2Go(2)] 

+ At$:Ati:i{[G0(4) - 4G0(5)]’ + G0(4)2} 

and 

At$: = 6v~,/[1 - 6 v ~ , G ~ ( r ; , ) ]  

At$: = 6VR,/[1 - 6VR,Go(r1,)]. 

Table 6 shows the numerical results of the T-T binding, which are calculated in terms 
of the screening potential values listed in table 2 .  
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Figure 8. Binding energy (mev) between 
two identical transition-metal impurities. 

-5 -4 -3 -2  -1 0 
Charge difference 

4. Conclusions 

In this work we have investigated the electronic structure resulting from the introduction 
of a hydrogen or a transition-metal impurity in FCC paramagnetic palladium. We have 
carried out a detailed calculation of the binding energy between pairs of hydrogen- 
hydrogen and between hydrogen-transition-metal impurity and the interaction between 
transition-metal impurities in Pd. A single extra orbital for the interstitial problem, a 
localised potential for the case of a substitutional impurity and a double extra orbital for 
the hydrogen-hydrogen interactions are used in this paper. 

The main features of our attempt are as follows: 
Bound states are present below the conduction band for the interstitial problem, the 

hydrogen-hydrogen and the hydrogen-transition-metal impurity interactions. 
The bound-states contribution to the hydrogen-hydrogen interaction is more impor- 

tant than that of the band, whereas the bound-states contribution is less for the hydrogen- 
‘4d’-type impurity compared with that of the band (tables 4 and 5 ) .  

An attractive H-H interaction is observed for the first nearest-neighbour position. 
This behaviour might be related to neglect of the short-range repulsive Coulomb inter- 
action. On the other hand, the elastic contribution to the H-H has been previously 
calculated by Khalifeh et al(l983) and found to be of the same order of magnitude as 
that of the electronic term. 

Transition-metal impurities of the ‘4d’ type lying to the left of Pd in the periodic table 
repel hydrogen (table 5 and figure 8). A clear and final statement about the trapping 
procedure is still not available because the elastic contribution to the trapping energy is 
not yet determined. However, Jena et a1 (1985) recently considered the trapping of 
hydrogen to be governed by the elastic interaction. 

In a recent work, Mokrani and Demangeat (1989) have considered the electron- 
electron interaction in their investigation of the hydrogen impurity problem in V and 
Nb. Our future objective is to extend this work on the FCC host so as to include the above- 
mentioned term. It is worth mentioning that such a calculation can cover other cubic 
transition metals if the electronic structure of hydrogen in these metals is obtained, 
which is, unfortunately, not the case for most of the three series of transition metals in 
the periodic table. 
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Appendix 

The aim of this appendix is to calculate some terms appearing in this text. Here we have 
the values of ATA(&) and ryA(&): 
A;.;,(&) = 6[(ssa)*G0(r,) + (Spa)2Go(T15) + (~da)~GO(r12)]  + 24(sda)'G0(7) 

+ ~ O ( S S O ) ( S ~ O ) G ~ ( ~ )  + 12(~do)~[G'(4)  - G0(5)] (Al l  
and 

ryA(&) = Vd{96[(~~~)G0(9)] '  + 9 6 [ ( ~ d a ) G ~ ( r , 2 ) ] ~  + 2 4 ( ~ d a ) * [ G ~ ( 4 ) ~  - 4G0(5)*] 
+ ~ ~ ( s s c T ) ( s ~ o ) G ~ ( ~ ) G ~ ( ~ )  + ~ ~ ( S S C T ) ~ G ~ ( ~ ) [ G ~ ( ~ )  - 2Go(5)] 
+ 9 6 ( ~ ~ c ~ ) ( ~ d a ) G ~ ( 9 ) [ G ~ ( 4 )  - 2Go(5)] - 96(~d0)*G~(4)G~(5)}  (A2) 

where Go(T,), G0(Tl5), Go(Tlz) and Go(r;,) are the intra-site Green function matrix 
elements for 's', 'p', 'dx2~y2' and 'dxy', respectively; Go(l), G0(2), . . ., GO(9) are the 
inter-site Green functions. The values of Ayp(&) and ryp(&) are 

AYpi(&) = (ss0)*[16G~(7) + 2Go(r l  )] - 4(ssa)(sda)G0(9) 

- (sda)2[Go(r12) + 2G0(4) - 6Go(5)] 
AYp2(&) = (sso)'[SGU(7) + G o ( r , ) ]  + ~ ~ ( s s o ) ( s ~ u ) G ~ ( ~ )  

+ (sda)2[Go(r12) + 2G0(4) - 6Go(5)] 
and 
rTpl(&) = Vd{-S[ (~~~)G0(9) ]2  +  do)^[ -Go(F12)' - 2G0(4)2 - 8G0(5)2 

- 24G0(4)G0(5) + Go(T1* )(-3G0(4) + 10Go(5))] 
+ ( s s c T ) ( s ~ ~ ) G ~ ( ~ ) [  -6G0(r12) - 8G0(4) + 16Go(5)]} 

ryflZ(&) = Vd{32[ (~~~)Go(9) ]2  + ( sda )2 [Go( r l~ )2  + 9G0(4)* + 32C0(5)2 

- 34G0(4)G0(5) + Go(T12)(V G0(4) - 12G0(5))] 
+ ( s s o ) ( s ~ o ) G ~ ( ~ ) [ ~ ~ G ~  (l-12 ) + 26G0(4) - 48Go(5)]}. 

The quantity ZART(&) appearing in equation (2.16) is given by 
1 

zART(&)  = - ; a r g [ ~ ( & ) ]  - 2 G~~ ( E )   ti,(&> 

K(&) = E - E;  - A ~ ~ ( E )  - ryA(&) - X;(&) - 2 ~ 3 ( 4  

d 

and 

with 

and 

When the substitutional impurity is located at R I ,  we have 
= (A$5)2(3At$: + At;:) 
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where 

A$5  = -2(ss~)G'(9) - 2(sdO)[Go(T,2) + 2G0(4) - 4Go(5)] 

Similarly, the summation in equation (A10) leads to the expression 

LTA ( E )  R = 96 VR Vd [2( sda) Go (6) - ( S S O )  (sdo) Go (6) Go (8) 

+ ( s s o ) ~ G ~ ( ~ ) ~ ] [ G ~ ( ~ )  + Go(3)]. (A161 
The phase shift corresponding to two substitutional '4d'-type impurities is 

ZRIR2(&) = -(2/n){arg[l - God(~)6VR1] + arg[l - God(~)6VR2]  

- Gid, R ( E ) A ~ R  2Gi:R ( E )  6 VR, 1. (A171 
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